- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anirudh Sabnis (1)
-
Daniel S. Berger (1)
-
Juncheng Yang (1)
-
K. V. Rashmi (1)
-
Ramesh K. Sitaraman (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Content Delivery Networks (CDNs) deliver much of the world’s web and video content to users from thousands of clusters deployed at the “edges” of the Internet. Maintain- ing consistent performance in this large distributed system is challenging. Through analysis of month-long logs from over 2000 clusters of a large CDN, we study the patterns of server unavailability. For a CDN with no redundancy, each server unavailability causes a sudden loss in performance as the objects previously cached on that server are not accessible, which leads to a miss ratio spike. The state-of-the-art miti- gation technique used by large CDNs is to replicate objects across multiple servers within a cluster. We find that although replication reduces miss ratio spikes, spikes remain a perfor- mance challenge. We present C2DN, the first CDN design that achieves a lower miss ratio, higher availability, higher resource efficiency, and close-to-perfect write load balancing. The core of our design is to introduce erasure coding into the CDN architecture and use the parity chunks to re-balance the write load across servers. We implement C2DN on top of open-source production software and demonstrate that com- pared to replication-based CDNs, C2DN obtains 11% lower byte miss ratio, eliminates unavailability-induced miss ratio spikes, and reduces write load imbalance by 99%.more » « less
An official website of the United States government

Full Text Available